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models, the governing equations are cast in the anholonomic geospherical framework
established in computational meteorology. The resulting discretisation retains proven
properties of the geospherical formulation, while it offers the flexibility of unstructured
meshes in enabling irregular spatial resolution. The latter allows for a global enhancement
of the spatial resolution away from the polar regions as well as for a local mesh refinement.
Clobal models A class of non-oscillatory forward-in-time edge-based solvers is developed and applied to
Non-oscillatory forward-in-time schemes numerical examples of three-dimensional hydrostatic flows, including shallow-water
PDE on the sphere benchmarks, on a rotating sphere.

Edge-based finite-volume schemes © 2010 Elsevier Inc. All rights reserved.

Keywords:
Unstructured meshes

1. Introduction

Contemporary global models used for simulating atmospheric flows are predominantly based on the latitude-longitude
(hereafter lat-lon, for brevity) structured grids with rigid connectivity. Such grids are far from optimal, because they preclude
heterogeneous spatial resolution. In particular, the lack of the grid optimality impairs the efficiency of computations in polar
regions [1]; whereas, in general, it can limit the accuracy of representing the multi-physics process interactions over a broad
range of scales [2]. For structured grids and meshes relying on spherical symmetries, typically the only available mesh adap-
tivity technique is the point enrichment. However, the point enrichment impedes smooth mesh spacing and requires special
treatments of interfaces between fine and coarse regions [3]. In contrast, a fully unstructured-mesh technology' enables
smooth variability of mesh spacing — e.g., in accord with flow field gradient anywhere in the computational domain — thus
benefiting adaptivity techniques and providing means for minimizing truncation errors via the optimal data-point distribution.
Unstructured meshes have proven record of accommodating efficiently a wide range of scales, intermittent distribution of forc-
ing regions, and complex geometry; see [7-9] for illustrations.

The realisation of limitations of structured lat-lon grids and attraction of flexible meshing for flows on a sphere has stim-
ulated research for over four decades; early contributions and their review include [10-13]. The early works explored a range
of approaches, including hexagonal-icosahedral, triangular, cubic and reduced grids or polar cups. The primary goal was to
circumvent the CFL limitations via mesh coarsening in the polar regions, while maintaining uniform accuracy of discretisa-
tion everywhere in the mesh. More recent developments aim also at improved resolution away from the poles and explore
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mesh flexibility required for the effective mesh adaptivity. Notwithstanding the efforts, except for a few numerical weather
prediction (NWP) models on icosahedral grids (cf. [14] and references therein), thus far there seem to be no sole alternative
to the classical lat-lon formulation embraced widely in operational NWP and climate studies [15]. The quest for an alterna-
tive improving on limitations of the structured lat-lon grid continues, as reviewed recently in [1,16,17]. Up to date, most
studies of global modelling using unstructured-mesh technology have concentrated on the solution of the shallow-water
equations using spherical polygonal, usually triangular, meshes. Majority of them retained some elements of the icosahedron
approach [18], either by taking advantage of its straightforward procedures for mesh generation, metric properties, or reg-
ular data structure. Concomitantly, the equations of motion have been formulated using two distinct modi operandi. One
approach operates in a global rotating Cartesian framework with the origin in the centre of the Earth, e.g. [19,2]. It circum-
vents theoretical complexities of differential manifolds (cf. Chapter XIV in [20]) by evaluating a flow on the sphere’s surface
directly as a three-dimensional flow in an Euclidean space. Another approach follows the formalism of calculus on manifolds,
while employing local coordinate mappings with origins representing individual computational cells on the sphere’s surface;
see [16] for a comprehensive discussion, list of references and example of numerical realization.

Here, we report on the development of a different approach. In essence, we start with the governing equations of motion
formulated in the classical lat-lon framework, Section 7.2 in [21], and circumvent limitations of the framework by discretis-
ing the equations using an unstructured-mesh technology. It might be argued that this is still akin to the second modus ope-
randi, as the classical framework does adhere to the principles of differential geometry. Yet its atlas consists of only three
charts, with the primary chart covering nearly the entire surface of the sphere and the remaining two degenerated to the
special boundary conditions for differentiating dependent variables in the vicinity of the poles. Nevertheless, the aim of
our approach is distinct, as its goal is to retain the benefits of the classical formulation — common in theoretical geo/astro
physics — while alleviating its shortcomings by manipulating the inhomogeneity and anisotropy of discretisation admitted
by unstructured meshes. This is diametrically different from covering the spherical surface with multitude of charts to assure
the uniformity of distretisation.

There are multiple benefits in adopting the geospherical coordinates approach, and most global atmospheric models em-
ploy it. For lat-lon grids the benefits of straightforward grid specification, analytic evaluation of geometrical metrics, and
maturity of flow solvers relying on index data structure and grid orthogonality make the geospherical framework a natural
choice. However, other proven properties of the classical geospherical formulation are not grid specific and can be retained
on more flexible unstructured meshes. The key one of such desirable properties is the physicality of the velocity vector, [21],
with zonal and meridional wind components directly measurable in local Cartesian coordinate systems. This is important for
the conservativity and the accuracy of a numerical model formulation (Section 3.3 in [22]) emphasizing mean/climatic cir-
culations of planetary and stellar systems. Another beneficial property of the geospherical framework is an exact analytic
representation of the spherical surface. This aspect is offered also by schemes utilising icosahedral properties but at the price
of limited mesh flexibility and complexity in constructing high-order spatial operators [16]. Some finite-element global
models provide flexible meshing by using various forms of isoparametric elements (e.g., based on polynomial mappings
[23]) for sphere discretisation. In effect, the accuracy of representing the geometry of a spherical surface depends on the ele-
ments used. Conversely, inaccurate representation of spherical surface can introduce significant errors in solution of the gov-
erning PDEs. Consider that if the curvature of triangular elements is neglected by covering the Earth with flat tiles [19], the
resulting errors in the radial displacement of an element (and arguably, of the isentropes aloft) are ~ r(d)?/8 (where o and
r denote the angular resolution and sphere’s radius, respectively) — i.e., insignificant for elements with angular size of 0.1
degree, but comparable to 200 m tall mountains at a 1° resolution. Yet another benefit of formulating the problem in the
geospherical framework is that it simplifies the unstructured-mesh generation. Notably, the required computational meshes
are generated for a simple geometry of the primary chart. In consequence, the mesh generation (and implementation of
mesh manipulation techniques used in adaptivity) are much easier than for the approaches that require generating flexible
meshes directly on a sphere embedded in an Euclidean space. For example, in two-dimensional (2D) shallow water and
three-dimensional (3D) hydrostatic models of the type illustrated in this paper, flexible meshes are generated for a rectangle
— in the same spirit as the regular lat-lon grid. In general, 3D meshes in the geospherical framework are generated for a sim-
ple hexahedron; whereas, a generation of 3D prismatic meshes, commonly used in atmospheric global models is
straightforward.

The generalisation of geospherical framework to arbitrary unstructured meshes offers an efficient numerical develop-
ment path for extending mature methods operating on lat-lon grids to flexible meshes. In particular, the presented approach
builds on the methodologies developed for an established structured-grid computational model EULAG for simulating ther-
mo-fluid flows across a wide range of scales and physical scenarios; see [24] for a recent review. EULAG has a proven record
in fluid dynamics of rotating stratified flows and in diverse areas of atmospheric applications. Its numerical concepts form a
particularly convenient base for advancing the proposed generalisation to flexible unstructured-mesh model. Especially rel-
evant is the capability of EULAG’s algorithms to accommodate abruptly changing control volumes (due to the underlying
mathematical and numerical model formulation in generalised, time-dependent curvilinear coordinates), demonstrated with
diverse tests across a range of scales and problems from mesoscale gravity wave dynamics to idealised terrestrial climate
[25,26].

The first necessary step towards enabling the generalisation of EULAG’s methodologies to hybrid unstructured meshes
was the derivation of MPDATA (multidimensional positive definite advection transport algorithm [27], a key feature of EU-
LAG) for an edge-based data structure [28,29]. Further essential steps included developments of a class of edge-based
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non-oscillatory forward-in-time solvers for compressible fluid equations [30,31]. Moreover, the potential for implementa-
tion of mesh adaptivity to the edge-based MPDATA methodology was explored in [6] where an explicit, analytical form of
the error estimator naturally arising from MPDATA was used in combination with mesh movement, remeshing and mesh
enrichment strategies. Comparisons reported for these edge-based developments show that the unstructured-mesh codes
retain proven properties of the standard EULAG and embody structured grids as a special case.

In the following section we introduce an abstract form of governing equations written in geospherical framework. Section
3 presents features of the analytical and numerical aspects of the unstructured-mesh algorithms developed for global flows.
Section 4 substantiates the theoretical and numerical formulation of the approach with selected benchmark calculations for
the shallow-water equations. Section 5 illustrates the potential of the unstructured-mesh discretisation in geospherical
framework for simulating geophysical flows across scales. It employs examples of (effectively) mesoscale orographic 3D flows
at a range of Froude numbers, using mesh refinement on reduced planets [32]. Remarks in Section 6 conclude the paper.

2. Geospherical framework

The notation and terminology adopted throughout this paper bridge the tensorial formalism of the presentation in [25]
with the nomenclature traditional in global-scale atmospheric applications, stemming from the use of orthogonal coordi-
nates [33,34]. In [25] the integrations of PDEs governing atmospheric dynamics were generalised for time-dependent
non-orthogonal curvilinear coordinates, to enable dynamic grid adaptivity by means of continuous mappings. The adopted
notation aims at future development of a unified framework for combining continuous mappings with an unstructured-
mesh discretisation.

We consider finite-volume approximations for an inhomogeneous archetype PDE representing a conservative form of an
evolutionary problem for a scalar variable s advected with a fluid flow on the sphere

oGy V- (Gv*y) = GR. (1)

ot

From the perspective of numerical methods, such an abstract PDE underlies a range of applications from elementary advec-
tive transport of the density of a passive tracer to elaborate systems of PDE describing complex dynamics of weather and
climate [24,31]. In (1) the Jacobian G = |gpq|”2 is defined in terms of the metric tensor g, of the spherlcal coordinate system
x=(x',x%) = (x,y) = (/,) with the metric form ds* = g, dxdx? = g, dx'dx' + gy, dx’dx* = (hyd2)* + (hyde)®, where
hy = /81 =rcos@, hy =,/g,; =rwith 4, ¢ and r denoting, respectively, the longitude and latitude angles and the sphere’s
radius. Consequently, G = hyh,, v* = x denotes the contravariant velocity, and V = (9/9x,9/9y) = (8/94,0/9¢). Whenever R
refers to the right-hand-side of a momentum equation, it accounts for pressure gradient terms as well as Coriolis and metric
forces in a form familiar from meteorological applications [33,34]. An elementary example illustrating the symbolic form in
(1) is the set of shallow-water equations

%P1V (GvD) =0,

0GQy OH 1 oh,

LY (Gva) = (—,%D— 1, - g 5 00, ). @)
G, o—cf - Ep aH 1 oh,

ot +V-(Gv Qy)—G< h —fQ, + @any>

where D and H denote, respectively, the depth of the shallow water and the height of its surface (in the absence of orogra-
phy/bathymetry, H = D), g is the gravitational acceleration, and f = f; sin ¢ is the Coriolis parameter. The momentum vector
Q = Dv, where v denotes a physical velocity (with dimensions of length/time), related to the contravariant velocity via

(v, vy) = (hyv, hyv) = (el hy (). (3)

Notably, when accounting for the mass continuity equation, the momentum equation in (2) is mathematically equivalent to
the Newtonian-law form for the velocity evolution.

dv d
D—:D( +v V)v R, (4)
dt
where R = (R,,Ry) is a shorthand for the forces in the parenthetic terms on the rhs of equations for (Q,,Q,) in (2).
3. Numerical approximations
3.1. Non-oscillatory forward-in-time algorithm

For integrating PDEs governing fluid motion on the sphere, we employ the non-oscillatory forward-in-time (NFT) tem-

plate algorithm generalised to the edge-based data structure [31]. Here, we extend it to the geospherical framework. A
set of conservative PDEs (1) can be written in a vector form as
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oGP
——+ V- (V®) =GR, (5)
ot
where ® is a vector of dependent variables — (D, Q,, Q,) in the case of (2) — and R is the vector of the associated rhs forcings.
Furthermore, V = Gv* is the advective velocity — termed as such, for the role it plays in advection schemes; cf. Section 4.1 of

[27]. The corresponding NFT algorithm approximates the space-time control volume integral of (5) directly (i.e., without
splitting) to the second order? as

Vin  ©F = 4(®" 4+ 0.56tR", V"2 G) + 0.56tRM! = ®; + 0.56tR™", (6)

where n and i have usual meaning of the temporal and spatial position, and A is a shorthand for the edge-based MPDATA
[28]. Following the experience with structured-grid MPDATA schemes for continuous mappings — see [27] and references
therein — the reduction of the Jacobian G in (6) is accounted for within the discrete transport operator, the technical aspects
of which will be explained shortly. The V"*'/? argument of .4 denotes a O(5t?) estimate of Gv* at t + 0.556t; whereas R™*! is a
second-order-accurate finite-volume representation of R. For the overall second-order accuracy of (6), it would suffice to
consider only an O(st)* representation of R, yet with R*' = R(t + 6t) + O(t3) the algorithm (6) admits schemes for wave
propagation with zero amplitude error [35].

Implementing the template (6) requires two specifications: (i) a first-order estimate of the advecting velocity V at t"+1/2;
and (ii) a second-order estimate of the rhs R at t™!, For V"*'/? one can use either a linear extrapolation, or a first-order solu-
tion to the governing system. It has been shown in [35], that integrating the evolutionary form (4) — rather than the math-
ematically equivalent conservation form (1) — provides means of stabilisation for elastic problems on co-located grids. Here
we use this option exclusively, employing over half t the centered-in-space forward-in-time Euler scheme for each compo-
nent of the physical velocity vector v

Vin VT2 =v1 - 0.55tv'[! - Viv + 0.55tRY, (7)

where V; denotes a centered finite-volume approximation of the gradient operator at the ith node, and R symbolizes the
specific counterpart of R (e.g. R/D in the case of (2)). The advective velocity in (6) is computed readily in the sequence
VITY2 v Y2 and ve 2 — (Gve)Y? = VT2 by means of local transformations. In the case of (2) with the transforma-
tion (3), V12 = (hy &, hey) 12

In general, a provision of an O(5t>) estimate of R*"! in (6) is problem dependent; see [31] for a range of examples. For all
computations reported in this paper, R = 0 in the mass continuity equation; advancing its solution first provides explicitly
the pressure gradient force in R for momenta; hereafter Re. However, the Coriolis and metric forces depend on momenta and
are, therefore, implicit; hereafter Ri. Rewriting the rhs forcing as the sum of explicit and implicit contributions R = Re + Ri,

leads to a refined form of (6)

Vi,n i-”l = Q,’ + 0.5(StRi?+]./ (8)
where Q = Q + 0.55tRe™!, with Q defined by the identity in (6). In shallow-water examples discussed later in the paper, (8)
is iterated as

Vin QUM =Q+ 0.56tRi(D?“,Q’7“"“1), 9)

1

where g1 =1,...,m numbers successive iterations, and the first guess Ri"™"° is either a first-order predictor or, simply,

Ri"""? = Ri". In the 3D examples extending the shallow-water equations to rotating stratified flows, the Ri is further decom-
posed into the Coriolis and metric terms Ri = CQ + M(D, Q), respectively, linear and nonlinear in Q; here C refers to the
skew-symmetric matrix of the Coriolis-force coefficients. In consequence, only the metric terms are iterated, whereas the
Coriolis terms are inverted algebraically according to

Vi Q= Qi+ 0501 - € 'M(D)L Q) (10)

where Q =[I- (]! Q and I is the identity matrix. Because in all problems considered in this paper the time-scales associ-
ated with the Coriolis and metric forces are much longer than the time-scale of advection and gravity waves, the 6t required
for the computational stability also warrants rapid convergence of iterations in (9) and (10). Depending on the initial guess,
at most two iterations suffice for providing an O(st?) estimate of the entire R*' for momenta. Notably, the computationally
intensive explicit part @ of (6) is evaluated only once per time step; cf. [34,31] for further discussion. Moreover, because (6)
assumes a co-located mesh, the iterative operations involve only nodal values.

3.2. Edge-based finite-volume discretisation

For flow problems considered in this paper, the spatial discretisation assumed in the template algorithm (6) uses the 2D
edge-based median-dual finite-volume approach [28]. This approach allows to circumvent theoretical complexity of tenso-

2 The NFT algorithm is congruent with the trapezoidal trajectory integral of the evolutionary form of (5); see Section 2.2 in [31] for a recent discussion.
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Fig. 1. The edge-based, median-dual approach in 2D. The edge connecting vertices i and j pierces the face S; shared by 2D computational (dual) cells
surrounding vertexes i and j. Open circles represent centres of the polygonal mesh cells.

rial formulation, by integrating the generic physical form of the governing PDE over arbitrarily-shaped cells on an arbitrary
manifold, and it lends itself well to various mesh adaptivity techniques [28,6]. A schematic of the edge-based data structure
for an arbitrary hybrid mesh on a 2D plane is shown in Fig. 1. The median-dual finite-volume approach constructs the control
volume associated with the vertex i by joining the centres of polygonal mesh cells encompassing the vertex i and midpoints
of edges originating in the vertex i, Fig. 1. The approach is readily applicable to 3D hybrid meshes [28].

Having defined the mesh in planar geometry,? all geometric elements such as cell volume, cell face area, and normals
are evaluated from elementary vector calculus. Hereafter, S; = Sjn; symbolizes the oriented surface element with n; denoting
the normal; V} is the planar area of the cell containing vertex i. In the geospherical framework all metric aspects are ac-
counted for analytically. Thus, the governing set of geospherical PDEs (5) can be viewed as a set of modified planar PDEs. In
particular, the transformations defining the advective velocity in terms of the contravariant and physical velocities, and the
definition of the finite-volume cell area on the surface of the sphere V; = G;V; suffice for implementing the MPDATA oper-
ator A in (6).

Let ¥ = ®" + 0.56tR" in (6). Technically, MPDATA consists of a series of the first-order upwind (alias donor-cell) steps,
with the first step providing first-order-accurate solution, and subsequent steps compensating the truncation error of the
preceding step while preserving the sign of the transported variable ¥. Employing the Gauss divergence theorem in the
edge-based finite-volume framework [28], each upwind step can be written as

st )
vt =v - D FS (11)
i j=1

The fluxes Fj* are interpreted as the mean normal fluxes through the cell face S; averaged over the temporal increment dt.
They assume the functional dependence on the cell-volume averaged field ¥ and the normal advective velocity V* at the face
Sj, in a form

Fji(‘I’,-, lP,-,Vji) = [VJ-L]J”‘P,"F [VJ-L]"P», (12)
with
V" =05(V+|V]), [V] =0.5(V—|V). (13)

The nonnegative/nonpositive parts of Vj always coincide with outflow/inflow from the ith cell. The summation in (11) is
over all I(i) edges connecting vertex i with its immediate neighbours j, and §; refers both to the cell face pierced by the
jth edge and to its oriented surface area; see Fig. 1. With this notation, the entire MPDATA procedure can be written in a
compact functional form as

g k— ot k— k— J(k
gl _ gl _ Ot SFH(Y n) w 1)’VJ+( )S, (14)

with k = 1,...,IORD such that
w0 — pn.  pUORD) _ pn+l
yhken) VL(v(k) pl V‘P(k))' yi = Vl‘r_m/z
b b ’ ] - ] .

3 This immediate benefit of the geospherical framework makes the task of mesh generation particularly straightforward compared to procedures required by
methods using meshes defined directly on a sphere.
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In (14), the first iteration uses for arguments of FjL the transported field values from the preceding time step and an O(5t?)
estimate of the velocity at t"*/2, In context of the governing equations (2),
(o () + () () + )

n+1/2

; (15)

Lin+1/2¢
Vi Tsi= 2 2

where 6x = X; — x; and Jy = y; — y; are the zonal and meridional angular increments, and 2, and 2, are the components of the
physical velocity predictor (7). In subsequent iterations in (14), the compensating antidiffusive velocity is defined by the lead-

ing truncation error of the preceding upwind step as V=**V = —(Error/y)*; namely,
k k .
yhlen) ‘V_L.(k)l |P; | — ¥l _ OitV_L(k) (V(k) V\‘I’k| ) (16)
T T ,
! ! |51+ 1P| + ¢ 2 |‘P\ s,

)

where V¥ = Gv~® and ¢ denotes a small constant, e.g. 107'°, to assure that the denominator does not vanish where
lek) = 'PE") = 0. In practice, one corrective iteration suffices for recovering the second-order accuracy of time-space centered
schemes. The latter is highlighted in Table 1 that lists the solution errors in function of the unstructured-mesh characteristic
spacing, for scalar advection of a cosine-bell tracer profile in a rotational flow past the poles with constant angular velocity —
a test case that we adopted from [36].

The remaining implementation details of (16) follow the planar formulation [6]. Applying the Gauss theorem to an aug-
mented vector field ¥e', with e/ denoting a unit vector in the Ith direction, the partial derivatives are evaluated as

LUN
(8}(1) A (Z VS, + > an’>7 Vi=Vit+ Vi (17)
J m'=1

where, ¥ = |P®|, ¥im = 0.5(%; + ¥,), and S|, denotes the Ith area component of the oriented surface element at the mth
edge. The associated “¥” denominator in the second term on the rhs of (16) is evaluated as a surface-area weighted average
from the same control volume

ALK L.
-5 (Z PS> S+ s);
= ot
) |
i = Z Sl + Z |t
m=1 m=

In the geospherical-framework implementation of the forcing terms R" in (6) we evaluate gradients according to:

(5),-
(3).-

hJ'1 ﬁ): H1 msx
Vi

m=1

hx: 1i) y
- HimS 19
' (z ) (19

m=1

Recall that the spherical area of the cell, already contains the Jacobian h;h,.
3.3. Periodic and polar boundaries

For the implementation of periodic boundary conditions in x-direction, consider a split dual cell shown in Fig. 2. The indi-
ces i; and i, mark computational points with matching y coordinate, respectively, on the left and right boundaries of the do-
main. The finite-volume integration of (11) for the points i; and i, becomes

n+1 n+1 n L L
=W =y +V,r <ZF S +ZF s) (20)

where V; and V;, are the left and right complementary parts of the total control volume. The evaluation of derivatives in (17)
and (19) follows the same principle, because it employs the Gauss divergence theorem analogously to the accumulation of
fluxes in (20).

Table 1
Scalar advection on an irregular triangular mesh (cf. Fig. 7); solid-body rotation past the poles. The two rows list, respectively: (a) spatial (and temporal)
resolution relative to a reference mesh with 128 x 64 nodes and (b) L, norm of the MPDATA solution error.

0E/o&, 6 3 1.5 0.75
L, 0.01253 0.00428 0.00111 0.00028
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Fig. 2. Periodic boundaries: (left) a finite volumes for periodic node; (right) coarse computational mesh showing periodic nodes seen in the physical space
on a sphere.

Fig. 2 highlights a particular case where for every node on the left boundary there exists a matching node on the right
boundary with the coinciding coordinate y. For unstructured meshes this is not generally the case and we enforce it during
mesh generation. Specifically, if |y; —y;| < 0.25dy, we employ mesh movement and edge swapping to enforce y; =y, [37,6],
and if |y; —y; |> 0.25dy we introduce additional matching nodes on the opposite boundaries of the computational domain
and reconnect them using supplementary edges. Alternatively, the later may be achieved by constructing for each un-
matched periodic node, a degenerated polygonal finite-volume cell containing a hanging node(s) [37]. We found that both
treatments perform similarly.

The polar boundary conditions are inherent in the geospherical framework. Here we describe the original formulation
consistent with the unstructured finite-volume schemes outlined in Sections 3.1 and 3.2. We avoid placing nodes at the
poles, where the geospherical framework may introduce singularities in the archetype PDE (1) and the related discretisa-
tions. It is beneficial and easy, to generate a mesh such that the nodes closest to the pole are placed at the same distance
from it. The distance is dictated by a half of the average internal edge length in this region. Fig. 3 shows that these nodes
form a solid line, parallel to the dashed line that corresponds to the position of the north pole. The resulting finite volume
for a point i is shown in the figure. The implementation of (14) for the point i is the same as for any other node, because the
normal velocity Vf at the cell face (dashed line) on the pole is zero, hence there is no contribution from fluxes through this
face. To substantiate, note that in (15) at the north pole cell face, the first term becomes zero because éy = n/2 — /2 =0,
and hy = rcos(m/2) nullifies the second term.

In the entire procedure (14)-(17) only steps (17) and (19) require special treatments in the polar regions. When evalu-
ating derivatives (19) at the point i, the information from the node k positioned on the sphere on the opposite side of the
pole, is required to evaluate contributions form the cell face on the north pole. In the geospherical coordinates point k
(marked in red) corresponds to a mesh node placed at x; = x; + /2. This is schematically shown in Fig. 3. During the
unstructured-mesh generation we ensure that for every node of the type i a corresponding node k exists. When the enforce-
ment of the condition for the nodes i and k to be on the opposite sides of the pole impacts on mesh flexibility, we use values
interpolated to the position x; + 7t/2. When computing the partial derivatives (17) that enter the antidiffusive velocities (16)
of MPDATA, the contributions from the point k are also required for evaluation of ¥ = 0.5(%; + ¥,;,) whenever m coincides
with the point k. Then, for ¥s representing the momentum components, the contributions from k are taken with an opposite
sign. The treatment at the south pole follows the same principles.

ot North pole

[ |

~Q

Fig. 3. A finite volume cell for a node neighbouring the north pole.
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Fig. 4. Zonal orographic flow; meridional velocity component, after 15 simulated days, using an irregular triangular mesh with 8436 points. The contour
interval is 2 m s~! and no zero contour lines are shown. The hill contours are 0.25, 0.5 and 0.75 of its height.

4. Numerical results
4.1. Shallow-water equations on the Sphere

The scalar advection of a cosine-bell summarised in Table 1, tested the handling of kinematics. The two following bench-
marks, a constant angular velocity zonal flow past an isolated mountain and the evolution of the Rossby-Haurwitz wave
number 4, test the handling of the planetary wave dynamics, epitomising global weather in linear and nonlinear regimes.

4.1.1. Zonal orographic flow

The first problem is a zonal flow past a conical hill centered in mid latitudes, studied by Grose and Hoskins [38]. The flow
is characterised by small Rossby and Froude numbers (here R, = U/Lf and Fr = U//gH, with L denoting the horizontal scale
of the problem) and, therefore, it is well explained by the linear theory [38]. This problem was proposed by Williamson et al.
[33] for evaluating the efficacy of numerical methods for global-scale dynamics and has become a benchmark in the field. In
[39] it was extended to 3D nonhydrostatic Boussinesq fluid, and employed to assess the relative merits of different analytic
formulations of the governing equations versus truncation errors of different integration schemes. To allow the comparison
with the results in [39] and, thus, to exemplify the capability of shallow-water equations to approximate long-wave solu-
tions of PDE systems governing 3D continuously stratified flows, here we follow the setup of [39]. The ambient zonal flow
assumes v, = (Ug cos ¢, 0), so the corresponding H, = Hy — 0.5g1(rfo + Uo)Up sin @ assures that the system (2) is satisfied
identically in the absence of an orographic forcing.* The hill embedded in the ambient flow is centered at (4, @) = (37/2, 7t/6);
itis 2 - 10° m high, and has the base radius /9. At the equator, the ambient wind Uy = 20 m s-!, whereas the depth of the fluid
Hy=8-10°m.

Fig. 4 shows the isolines of meridional velocity components after 15 (simulated) days. This solution was obtained on an
irregular triangular mesh (of the type shown in Fig. 7) consisting of 8436 points, using the constan